↳ Prolog
↳ PrologToPiTRSProof
goal_in(X) → U6(X, s2t_in(X, T1))
s2t_in(0, nil) → s2t_out(0, nil)
s2t_in(s(X), node(nil, Y, nil)) → s2t_out(s(X), node(nil, Y, nil))
s2t_in(s(X), node(T, Y, nil)) → U5(X, T, Y, s2t_in(X, T))
s2t_in(s(X), node(nil, Y, T)) → U4(X, Y, T, s2t_in(X, T))
s2t_in(s(X), node(T, Y, T)) → U3(X, T, Y, s2t_in(X, T))
U3(X, T, Y, s2t_out(X, T)) → s2t_out(s(X), node(T, Y, T))
U4(X, Y, T, s2t_out(X, T)) → s2t_out(s(X), node(nil, Y, T))
U5(X, T, Y, s2t_out(X, T)) → s2t_out(s(X), node(T, Y, nil))
U6(X, s2t_out(X, T1)) → U7(X, tappend_in(T1, T2, T3))
tappend_in(node(T1, X, T2), T3, node(T1, X, U)) → U2(T1, X, T2, T3, U, tappend_in(T2, T3, U))
tappend_in(node(T1, X, T2), T3, node(U, X, T2)) → U1(T1, X, T2, T3, U, tappend_in(T1, T3, U))
tappend_in(node(T1, X, nil), T2, node(T1, X, T2)) → tappend_out(node(T1, X, nil), T2, node(T1, X, T2))
tappend_in(node(nil, X, T2), T1, node(T1, X, T2)) → tappend_out(node(nil, X, T2), T1, node(T1, X, T2))
tappend_in(nil, T, T) → tappend_out(nil, T, T)
U1(T1, X, T2, T3, U, tappend_out(T1, T3, U)) → tappend_out(node(T1, X, T2), T3, node(U, X, T2))
U2(T1, X, T2, T3, U, tappend_out(T2, T3, U)) → tappend_out(node(T1, X, T2), T3, node(T1, X, U))
U7(X, tappend_out(T1, T2, T3)) → goal_out(X)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
goal_in(X) → U6(X, s2t_in(X, T1))
s2t_in(0, nil) → s2t_out(0, nil)
s2t_in(s(X), node(nil, Y, nil)) → s2t_out(s(X), node(nil, Y, nil))
s2t_in(s(X), node(T, Y, nil)) → U5(X, T, Y, s2t_in(X, T))
s2t_in(s(X), node(nil, Y, T)) → U4(X, Y, T, s2t_in(X, T))
s2t_in(s(X), node(T, Y, T)) → U3(X, T, Y, s2t_in(X, T))
U3(X, T, Y, s2t_out(X, T)) → s2t_out(s(X), node(T, Y, T))
U4(X, Y, T, s2t_out(X, T)) → s2t_out(s(X), node(nil, Y, T))
U5(X, T, Y, s2t_out(X, T)) → s2t_out(s(X), node(T, Y, nil))
U6(X, s2t_out(X, T1)) → U7(X, tappend_in(T1, T2, T3))
tappend_in(node(T1, X, T2), T3, node(T1, X, U)) → U2(T1, X, T2, T3, U, tappend_in(T2, T3, U))
tappend_in(node(T1, X, T2), T3, node(U, X, T2)) → U1(T1, X, T2, T3, U, tappend_in(T1, T3, U))
tappend_in(node(T1, X, nil), T2, node(T1, X, T2)) → tappend_out(node(T1, X, nil), T2, node(T1, X, T2))
tappend_in(node(nil, X, T2), T1, node(T1, X, T2)) → tappend_out(node(nil, X, T2), T1, node(T1, X, T2))
tappend_in(nil, T, T) → tappend_out(nil, T, T)
U1(T1, X, T2, T3, U, tappend_out(T1, T3, U)) → tappend_out(node(T1, X, T2), T3, node(U, X, T2))
U2(T1, X, T2, T3, U, tappend_out(T2, T3, U)) → tappend_out(node(T1, X, T2), T3, node(T1, X, U))
U7(X, tappend_out(T1, T2, T3)) → goal_out(X)
GOAL_IN(X) → U61(X, s2t_in(X, T1))
GOAL_IN(X) → S2T_IN(X, T1)
S2T_IN(s(X), node(T, Y, nil)) → U51(X, T, Y, s2t_in(X, T))
S2T_IN(s(X), node(T, Y, nil)) → S2T_IN(X, T)
S2T_IN(s(X), node(nil, Y, T)) → U41(X, Y, T, s2t_in(X, T))
S2T_IN(s(X), node(nil, Y, T)) → S2T_IN(X, T)
S2T_IN(s(X), node(T, Y, T)) → U31(X, T, Y, s2t_in(X, T))
S2T_IN(s(X), node(T, Y, T)) → S2T_IN(X, T)
U61(X, s2t_out(X, T1)) → U71(X, tappend_in(T1, T2, T3))
U61(X, s2t_out(X, T1)) → TAPPEND_IN(T1, T2, T3)
TAPPEND_IN(node(T1, X, T2), T3, node(T1, X, U)) → U21(T1, X, T2, T3, U, tappend_in(T2, T3, U))
TAPPEND_IN(node(T1, X, T2), T3, node(T1, X, U)) → TAPPEND_IN(T2, T3, U)
TAPPEND_IN(node(T1, X, T2), T3, node(U, X, T2)) → U11(T1, X, T2, T3, U, tappend_in(T1, T3, U))
TAPPEND_IN(node(T1, X, T2), T3, node(U, X, T2)) → TAPPEND_IN(T1, T3, U)
goal_in(X) → U6(X, s2t_in(X, T1))
s2t_in(0, nil) → s2t_out(0, nil)
s2t_in(s(X), node(nil, Y, nil)) → s2t_out(s(X), node(nil, Y, nil))
s2t_in(s(X), node(T, Y, nil)) → U5(X, T, Y, s2t_in(X, T))
s2t_in(s(X), node(nil, Y, T)) → U4(X, Y, T, s2t_in(X, T))
s2t_in(s(X), node(T, Y, T)) → U3(X, T, Y, s2t_in(X, T))
U3(X, T, Y, s2t_out(X, T)) → s2t_out(s(X), node(T, Y, T))
U4(X, Y, T, s2t_out(X, T)) → s2t_out(s(X), node(nil, Y, T))
U5(X, T, Y, s2t_out(X, T)) → s2t_out(s(X), node(T, Y, nil))
U6(X, s2t_out(X, T1)) → U7(X, tappend_in(T1, T2, T3))
tappend_in(node(T1, X, T2), T3, node(T1, X, U)) → U2(T1, X, T2, T3, U, tappend_in(T2, T3, U))
tappend_in(node(T1, X, T2), T3, node(U, X, T2)) → U1(T1, X, T2, T3, U, tappend_in(T1, T3, U))
tappend_in(node(T1, X, nil), T2, node(T1, X, T2)) → tappend_out(node(T1, X, nil), T2, node(T1, X, T2))
tappend_in(node(nil, X, T2), T1, node(T1, X, T2)) → tappend_out(node(nil, X, T2), T1, node(T1, X, T2))
tappend_in(nil, T, T) → tappend_out(nil, T, T)
U1(T1, X, T2, T3, U, tappend_out(T1, T3, U)) → tappend_out(node(T1, X, T2), T3, node(U, X, T2))
U2(T1, X, T2, T3, U, tappend_out(T2, T3, U)) → tappend_out(node(T1, X, T2), T3, node(T1, X, U))
U7(X, tappend_out(T1, T2, T3)) → goal_out(X)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
GOAL_IN(X) → U61(X, s2t_in(X, T1))
GOAL_IN(X) → S2T_IN(X, T1)
S2T_IN(s(X), node(T, Y, nil)) → U51(X, T, Y, s2t_in(X, T))
S2T_IN(s(X), node(T, Y, nil)) → S2T_IN(X, T)
S2T_IN(s(X), node(nil, Y, T)) → U41(X, Y, T, s2t_in(X, T))
S2T_IN(s(X), node(nil, Y, T)) → S2T_IN(X, T)
S2T_IN(s(X), node(T, Y, T)) → U31(X, T, Y, s2t_in(X, T))
S2T_IN(s(X), node(T, Y, T)) → S2T_IN(X, T)
U61(X, s2t_out(X, T1)) → U71(X, tappend_in(T1, T2, T3))
U61(X, s2t_out(X, T1)) → TAPPEND_IN(T1, T2, T3)
TAPPEND_IN(node(T1, X, T2), T3, node(T1, X, U)) → U21(T1, X, T2, T3, U, tappend_in(T2, T3, U))
TAPPEND_IN(node(T1, X, T2), T3, node(T1, X, U)) → TAPPEND_IN(T2, T3, U)
TAPPEND_IN(node(T1, X, T2), T3, node(U, X, T2)) → U11(T1, X, T2, T3, U, tappend_in(T1, T3, U))
TAPPEND_IN(node(T1, X, T2), T3, node(U, X, T2)) → TAPPEND_IN(T1, T3, U)
goal_in(X) → U6(X, s2t_in(X, T1))
s2t_in(0, nil) → s2t_out(0, nil)
s2t_in(s(X), node(nil, Y, nil)) → s2t_out(s(X), node(nil, Y, nil))
s2t_in(s(X), node(T, Y, nil)) → U5(X, T, Y, s2t_in(X, T))
s2t_in(s(X), node(nil, Y, T)) → U4(X, Y, T, s2t_in(X, T))
s2t_in(s(X), node(T, Y, T)) → U3(X, T, Y, s2t_in(X, T))
U3(X, T, Y, s2t_out(X, T)) → s2t_out(s(X), node(T, Y, T))
U4(X, Y, T, s2t_out(X, T)) → s2t_out(s(X), node(nil, Y, T))
U5(X, T, Y, s2t_out(X, T)) → s2t_out(s(X), node(T, Y, nil))
U6(X, s2t_out(X, T1)) → U7(X, tappend_in(T1, T2, T3))
tappend_in(node(T1, X, T2), T3, node(T1, X, U)) → U2(T1, X, T2, T3, U, tappend_in(T2, T3, U))
tappend_in(node(T1, X, T2), T3, node(U, X, T2)) → U1(T1, X, T2, T3, U, tappend_in(T1, T3, U))
tappend_in(node(T1, X, nil), T2, node(T1, X, T2)) → tappend_out(node(T1, X, nil), T2, node(T1, X, T2))
tappend_in(node(nil, X, T2), T1, node(T1, X, T2)) → tappend_out(node(nil, X, T2), T1, node(T1, X, T2))
tappend_in(nil, T, T) → tappend_out(nil, T, T)
U1(T1, X, T2, T3, U, tappend_out(T1, T3, U)) → tappend_out(node(T1, X, T2), T3, node(U, X, T2))
U2(T1, X, T2, T3, U, tappend_out(T2, T3, U)) → tappend_out(node(T1, X, T2), T3, node(T1, X, U))
U7(X, tappend_out(T1, T2, T3)) → goal_out(X)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
TAPPEND_IN(node(T1, X, T2), T3, node(U, X, T2)) → TAPPEND_IN(T1, T3, U)
TAPPEND_IN(node(T1, X, T2), T3, node(T1, X, U)) → TAPPEND_IN(T2, T3, U)
goal_in(X) → U6(X, s2t_in(X, T1))
s2t_in(0, nil) → s2t_out(0, nil)
s2t_in(s(X), node(nil, Y, nil)) → s2t_out(s(X), node(nil, Y, nil))
s2t_in(s(X), node(T, Y, nil)) → U5(X, T, Y, s2t_in(X, T))
s2t_in(s(X), node(nil, Y, T)) → U4(X, Y, T, s2t_in(X, T))
s2t_in(s(X), node(T, Y, T)) → U3(X, T, Y, s2t_in(X, T))
U3(X, T, Y, s2t_out(X, T)) → s2t_out(s(X), node(T, Y, T))
U4(X, Y, T, s2t_out(X, T)) → s2t_out(s(X), node(nil, Y, T))
U5(X, T, Y, s2t_out(X, T)) → s2t_out(s(X), node(T, Y, nil))
U6(X, s2t_out(X, T1)) → U7(X, tappend_in(T1, T2, T3))
tappend_in(node(T1, X, T2), T3, node(T1, X, U)) → U2(T1, X, T2, T3, U, tappend_in(T2, T3, U))
tappend_in(node(T1, X, T2), T3, node(U, X, T2)) → U1(T1, X, T2, T3, U, tappend_in(T1, T3, U))
tappend_in(node(T1, X, nil), T2, node(T1, X, T2)) → tappend_out(node(T1, X, nil), T2, node(T1, X, T2))
tappend_in(node(nil, X, T2), T1, node(T1, X, T2)) → tappend_out(node(nil, X, T2), T1, node(T1, X, T2))
tappend_in(nil, T, T) → tappend_out(nil, T, T)
U1(T1, X, T2, T3, U, tappend_out(T1, T3, U)) → tappend_out(node(T1, X, T2), T3, node(U, X, T2))
U2(T1, X, T2, T3, U, tappend_out(T2, T3, U)) → tappend_out(node(T1, X, T2), T3, node(T1, X, U))
U7(X, tappend_out(T1, T2, T3)) → goal_out(X)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
TAPPEND_IN(node(T1, X, T2), T3, node(U, X, T2)) → TAPPEND_IN(T1, T3, U)
TAPPEND_IN(node(T1, X, T2), T3, node(T1, X, U)) → TAPPEND_IN(T2, T3, U)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
TAPPEND_IN(node(T1, T2)) → TAPPEND_IN(T1)
TAPPEND_IN(node(T1, T2)) → TAPPEND_IN(T2)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
S2T_IN(s(X), node(T, Y, T)) → S2T_IN(X, T)
S2T_IN(s(X), node(T, Y, nil)) → S2T_IN(X, T)
S2T_IN(s(X), node(nil, Y, T)) → S2T_IN(X, T)
goal_in(X) → U6(X, s2t_in(X, T1))
s2t_in(0, nil) → s2t_out(0, nil)
s2t_in(s(X), node(nil, Y, nil)) → s2t_out(s(X), node(nil, Y, nil))
s2t_in(s(X), node(T, Y, nil)) → U5(X, T, Y, s2t_in(X, T))
s2t_in(s(X), node(nil, Y, T)) → U4(X, Y, T, s2t_in(X, T))
s2t_in(s(X), node(T, Y, T)) → U3(X, T, Y, s2t_in(X, T))
U3(X, T, Y, s2t_out(X, T)) → s2t_out(s(X), node(T, Y, T))
U4(X, Y, T, s2t_out(X, T)) → s2t_out(s(X), node(nil, Y, T))
U5(X, T, Y, s2t_out(X, T)) → s2t_out(s(X), node(T, Y, nil))
U6(X, s2t_out(X, T1)) → U7(X, tappend_in(T1, T2, T3))
tappend_in(node(T1, X, T2), T3, node(T1, X, U)) → U2(T1, X, T2, T3, U, tappend_in(T2, T3, U))
tappend_in(node(T1, X, T2), T3, node(U, X, T2)) → U1(T1, X, T2, T3, U, tappend_in(T1, T3, U))
tappend_in(node(T1, X, nil), T2, node(T1, X, T2)) → tappend_out(node(T1, X, nil), T2, node(T1, X, T2))
tappend_in(node(nil, X, T2), T1, node(T1, X, T2)) → tappend_out(node(nil, X, T2), T1, node(T1, X, T2))
tappend_in(nil, T, T) → tappend_out(nil, T, T)
U1(T1, X, T2, T3, U, tappend_out(T1, T3, U)) → tappend_out(node(T1, X, T2), T3, node(U, X, T2))
U2(T1, X, T2, T3, U, tappend_out(T2, T3, U)) → tappend_out(node(T1, X, T2), T3, node(T1, X, U))
U7(X, tappend_out(T1, T2, T3)) → goal_out(X)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
S2T_IN(s(X), node(T, Y, T)) → S2T_IN(X, T)
S2T_IN(s(X), node(T, Y, nil)) → S2T_IN(X, T)
S2T_IN(s(X), node(nil, Y, T)) → S2T_IN(X, T)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
S2T_IN(s(X)) → S2T_IN(X)
From the DPs we obtained the following set of size-change graphs: